
Recognizing (Unit) Interval Graphs by Zigzag Graph Searches

Yixin Cao

Department of Computing, Hong Kong Polytechnic University

香港理工大學 電子計算學系

SIAM Symposium on Simplicity in Algorithms
January 10, 2021

http://www.polyu.edu.hk/
http://www.comp.polyu.edu.hk/


Interval graphs
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(a) An interval graph.
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(b) Its interval representation.

A graph G is an interval graph if there is a set I of intervals on the real line and a
bijection ϕ: V (G)→ I such that uv ∈ E(G)⇐⇒ ϕ(u) ∩ ϕ(v) ̸= ∅.



Is this an interval graph?



The answer: monarchy rulers of China, France, and UK, 1661–1900

1660 1700 1800 1900
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George IV
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Victoria

康熙
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嘉庆

道光
咸丰

同治
光绪

Louis XIV
Louis XV

Louis XVI
Napoleon I

Louis XVIII
Charles X

Louis Philippe
Napoleon III



A closer look at interval models
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Each interval representation defines a unique interval graph.
But an interval graph can have many interval representations.

I(v) = [lp(v), rp(v)]

What’re important aren’t the absolute positions of the 2n endpoints.
but the ordering, not unique but finite.



Characterization of interval graphs: Clique paths
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For each endpoint, draw a vertical line.
Intervals crossing each line induce a clique.

They include all maximal cliques.

Clique path (a special kind of clique tree):
each node for a maximal clique and
cliques containing v induce a sub-path.

From a clique path we can “read”
lp(v) = min{i | v ∈ Ki}
rp(v) = max{i | v ∈ Ki}
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Characterization of interval graphs: Interval ordering
v2

v1 v3 v4 v6 v7 v8
v5

v1
v2

v3
v4

v5
v6

v7

v8

v1 v2 v3 v4 v5 v6 v7 v8

v1
v2

v3
v4

v5

v6
v7

v8

Sort the intervals by their left endpoints.
breaking ties arbitrarily.

i < j < k and vi ∼ vk then vi ∼ vj .

σ : 1, 2, 3, 4, 5, 6, 7, 8.
r(i) : 2, 8, 4, 6, 6, 7, 7, 8.

From an ordering we can read:
I(vi) = [σ(vi), σ(vr(i))]
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Characterizations of interval graphs (summary)

interval
rep.

clique
path

interval
ordering

The following are equivalent:
1 G is an interval graph.
2 G has an interval ordering.
3 G has a clique path.



Recursive breadth-first search (bfs)
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The output of a bfs is a bfs tree
in which the order of siblings is immaterial.

3, . . . , 8 can be visited in any order.

Since we aim for an ordering.
We may recursively conduct bfs.
1, 2, [3, . . . , 8]
1, 2, 3, 4, [5, 6], 7, 8
1, 2, 3, 4, 5, 6, 7, 8



Lexicographical breadth-first search (lbfs)

L1, L2 ⊆ {1, 2, . . . , n}, and L1 ̸= L2.
L1 is lexicographically larger than L2 if the minimum element in (L1 \ L2) ∪ (L2 \ L1)
belongs to L1. e.g., {1, 2} > {1, 3, 4} > {1}.

1. for each v ∈ V (G) do label(v)← ∅;
2. for i = 1, . . . , n do
2.1. S ← unvisited vertices with the lexicographically largest label;
2.2. v ← any vertex in S;
2.3. σ(v)← i;
2.4. for each unvisited neighbor of v do add i to label(v);
3. return σ.

Fact: lbfs is the recursive bfs.
Theorem (rose-76-vertex-elimination rose-76-vertex-elimination).
On a chordal ({Cℓ | ℓ ≥ 4}-free) graph, the last vertex of an lbfs is simplicial.



Interval orderings and lbfs orderings

Proposition. Any interval ordering σ of an interval graph G is an lbfs ordering of G.

Proof. We may assume without loss of generality that σ(vi) = i for all i = 1, . . . , n.
For any i, p, and q with i < p < q, if vivq ∈ E(G), then vivp ∈ E(G) as well. Thus,

{v1, . . . , vp−1} ∩N(vq) ⊆ {v1, . . . , vp−1} ∩N(vp),

and after visiting {v1, . . . , vp−1}, the label of vp is no smaller than that of vq.

— The other direction is not true: most lbfs orderings are not interval orderings.

Theorem (corneil-10-end-vertices-lbfs corneil-10-end-vertices-lbfs).
If G is an interval graph, then an interval ordering of G can be produced by less than n
sweeps of lbfs+ (a variant of lbfs).



Maximal cliques of a chordal graph
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These representations are not unique
The clique tree implies a representation.
Two subtrees intersect if they have one point in common.



Recognition algorithms for interval graphs

Build a clique tree and check whether it can be transformed into a clique path:
booth-76-pq-tree booth-76-pq-tree PQ–trees.
korte-89-recognizing-interval-graphs korte-89-recognizing-interval-graphs
lbfs and Modified PQ–trees.
Hsu and McConnell hsu-03-pc-trees
Hsu and Ma hsu-99-recognizing-interval-graphs modular decomposition
habib-00-LBFS-and-partition-refinement
habib-00-LBFS-and-partition-refinement lbfs and partition refinement.

Construct an interval ordering:
simon-91-interval simon-91-interval multiple sweeps lbfs

corneil-09-lbfs-strucuture-and-interval-recognition
corneil-09-lbfs-strucuture-and-interval-recognition 6 sweeps of lbfs

li-14-lbfs-interval-recognition li-14-lbfs-interval-recognition 4 sweeps of lbfs



Appetizer: Unit Interval Graphs



Unit/proper interval graphs
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unit: All the intervals have the same length.
proper: No interval properly contains another.

Umbrella (proper interval) ordering:
vi ∼ vk ⇒ vi ∼ vj and vj ∼ vk

Sorting vertices in the order of their left endpoints in a proper representations.
The reversal of an umbrella ordering is also an umbrella ordering.



Umbrella orderings → clique paths and representations
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vr(i): last neighbor of vi in σ

n cliques: Ki = {vi, . . . , vr(i)}
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= [2, 4.4];

I(v3) =[3, 4.6]; I(v4) = [4, 5.8]; I(v5) = [5, 6]
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Uniqueness of clique paths

Proposition. A connected proper interval graph has a unique clique path.

Proof 1: Suppose that there are two clique paths. We can find a minimal sub-path of
the first that do not appear in the same order in the second.
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K?

v

2. Follows from Hsu’s theorem if all its modules are cliques. Trivial if Kr ∨ (Kp +Kq).
Otherwise, removing universal vertices leaves another connected proper interval graph.
3. Let K1, . . . ,Kℓ be a clique path. A simplicial vertex in Ki, 1 < i < ℓ is the nose of
a bull. So the ends of any clique path of G must be K1 and Kℓ. Then K2 and Kℓ−1.

Theorem (Deng, Hell, Huang 1996).
If a unit interval graph contains no true twins, then it has a unique ordering up to ...



LBFS on unit interval graphs

We look for an umbrella ordering, so should start from “an end” of the graph.

v1 v2 v4 v5

v3
From v1 may give

or
⟨v1, v2, v4, v3, v5⟩
⟨v1, v2, v3, v4, v5⟩

It cannot distinguish v3 and v4.

From v5 may give
or
⟨v5, v4, v3, v2, v1⟩
⟨v5, v4, v2, v3, v1⟩

It cannot distinguish v2 and v3.

Together they can:
v2 before v3; v4 after v3.

Not done yet
1 Where are “the ends”?
2 How to combine the two orderings?
3 Whether the output is correct?
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The ends

1. find “the ends”?

2. combine complementary orderings

3. verify the output

A terminal: a simplicial vertex in the first clique of a clique path.
More restrictive than end interval (Gimbel gimbel-88-end-vertices)

Proposition. The last vertex of an lbfs ordering is a terminal of G.
Corollary. An lbfs starting from a terminal ends with another terminal.



lbfs+

Input: A graph G, and an lbfs ordering σ of G.

1. for each v ∈ V (G) do label(v)← ∅;
2. for i = 1, . . . , n do
2.1. S ← unvisited vertices with the lexicographically largest label;
2.2. v ← the last vertex of σ|S ;
2.3. σ+(v)← i;
2.4. for each unvisited neighbor of v do add i to label(v);
3. return σ+.

1. find “the ends”?

2. combine complementary orderings

3. verify the output v1 v2 v4 v5

v3

σ : v1, v2, v4, v3, v5
σ+ : v5, v4, v3, v2, v1



The algorithm for recognizing unit interval graphs

1. τ ← an lbfs ordering of G;
2. σ ← lbfs+(G, τ);
3. σ+ ← lbfs+(G, σ);
4. if σ+ is an umbrella ordering of G then return “yes”;
5. else return “no.”

Theorem (Corneil 2004).
If G is a proper interval graph, then three sweeps of lbfs produce an umbrella ordering.



Whether the output is correct?

1. find “the ends”?

2. combine complementary orderings

3. verify the output

v1 v2 v4 v5

v3

Final output σ+:
v1, v2, v3, v4, v5

Order N(v) in the reversed order of σ+

v1 :v2

v2 :v4 → v3 → v1

v3 :v4 → v2

v4 :v5 → v3 → v2

v5 :v4

check whether the list for vi starts from
r(i), r(i)− 1, . . . , i+ 1

Do the same operations for the reversal of σ+

return “yes” if both tests are passed.



A two-sweep algorithm

Input: A connected graph G and a vertex s ∈ V (G).

1. for each v ∈ V (G) do label(v)← ∅;
2. σ(s)← 1;
3. for i = 2, . . . , n do
3.1. S ← unvisited vertices with the lexicographically largest label;
3.2. v ← a vertex with the minimum degree in S;
3.3. σ(v)← i;
3.4. for each unvisited neighbor of v do add i to label(v);
4. return σ.

1. u← an end vertex of G;
2. σ ← lbfsδ(G, u);
4. if σ is an umbrella ordering of G then return “yes”;
5. else return “no.”



Recognition of Interval Graphs



Why interval graphs are difficult?
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for 1 ≤ i < j < k ≤ n, vi ∼ vk implies only vi ∼ vj .
the reversal of an interval ordering may not be an interval ordering.
1, 2, . . . , 17 is an interval ordering, but 17, 16, . . . , 1 is not.
clique paths may not be unique.

An lbfs does not necessarily go from left to right, it can jump arbitrarily (zigzag).
e.g., 1, 2, 16, 11, . . .



An oversimplistic summary

Breaking fake twins (unit interval graphs)1 and fake modules (interval graphs).

1If an unit interval graph contains a non-clique module, it’s more or less trivial.



Modules
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M is a module if for all u, v ∈M and x ̸∈M , xu ∈ E(G) if and only if xv ∈ E(G).
vertices in M have the same neighborhood outside M .

trivial modules: V (G), ∅, and {v}. the graph has 13 trivial modules.
Other simple examples: components and

twin classes (clique modules, independent set modules).



Interval graphs and modules

Let M be a non-clique module of G, and G′ = G− (M \ {v}) for some vertex v ∈M .

Proposition. G is an interval graph if and only if (1) N(M) is a clique; and (2) both
G′ and G[M ] are interval graphs.

v2

v1 v3 v4 v6 v7 v8v5

(a) G

v2

v1 v5 v8

v3 v4 v6 v7
v5

(b) G′ and G[M ]

1
2

5 8

3
4

5
6

7

(c) interval representations for G′ and G[M ].



Why it worked and why it doesn’t work

v1 v2 v4 v5

v3

v2

v1 v3 v4 v6 v7 v8
v5

v2

v1 v3 v4 v6 v7 v8
v5 v9

For the recognition of proper interval graphs,
it is neither necessary nor possible to distinguish true twins;
what we need to do is to distinguish “fake” twins; and
an lbfs from v1 cannot distinguish {v3, v4}.

In both graphs, an lbfs from v1 cannot distinguish {v3, v4, . . . , v8},
a module (N(M) = N(x) \M for all x ∈M) in the first, but not the second.



Inspiration
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

σ1 : 1, 2, 20, 8, 4, [19, 18, 17, 9, 12, 16, 15, 13, 11, 14, 10, 7, 6], 5, 3, 21, 22

σ+
1 :σ+
1 : 22, 4, 21, 20, 8, 2, [6, 7, 9, 10, 11, 13, 12, 14, 15, 16, 17, 18, 19], 5, 3, 1

σ2 : 1, 2, 3, 4, 8, [20, [15, 16, 12, 9, 13, 11, 14, 17, 10, 18, 7, 19, 6]], 5, 21, 22

σ+
2 :σ+
2 : 22, 4, 21, 20, 8, 2, [6, 7, 9, 18, 17, 12, 14, 13, 11, 15, 16, 10, 19], 5, 3, 1

σ3 : 1, 2, [4, 20, 8, [6, 7, 9, 18, 17, 12, [11, 13, 15, 14, 16], 10, 19], 5, 3], 21, 22

σ+
3 :σ+
3 : 22, 4, 21, 20, 8, 2, [19, 18, 17, 9, 12, [16, 15, 13, 14, 11], 10, 7, 6], 5, 3, 1
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σ+
2 :σ+
2 : 22, 4, 21, 20, 8, 2, [6, 7, 9, 18, 17, 12, 14, 13, 11, 15, 16, 10, 19], 5, 3, 1

σ3 : 1, 2, [4, 20, 8, [6, 7, 9, 18, 17, 12, [11, 13, 15, 14, 16], 10, 19], 5, 3], 21, 22

σ+
3 :σ+
3 : 22, 4, 21, 20, 8, 2, [19, 18, 17, 9, 12, [16, 15, 13, 14, 11], 10, 7, 6], 5, 3, 1



Snapshot: one-sided module

Snapshot: the set S in step 2.1 in lbfs+.
There are n snapshots, the one in the iteration visiting vi is denoted by Sσ(vi).
Sσ(v1) = V (G) and Sσ(vn) = {vn}.
All vertices in Sσ(vi) have the label in this iteration, i.e., {v1, . . . , vi−1} ∩N(vi).

v2

v1 v3 v4 v6 v7 v8
v5

nontrivial snapshots of 1, . . . , 8.

1 : 1, 2, 3, 4, 5, 6, 7, 8.

3 : 3, 4, 5, 6, 7, 8

5 : 5, 6

in summary, 1, 2, [3, 4, [5, 6], 7, 8].



Well-anchored orderings

1
2

3
4

5
6

7
8

9
10
11

12
13

14 15
16

17
18

19
20

21

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

σ3 : 1, 2, [4, 20, 8, [6, 7, 9, 18, 17, 12, [11, 13, 15, 14, 16], 10, 19], 5, 3], 21, 22

σ+
3 : 22, 4, 21, 20, 8, 2, [19, 18, 17, 9, 12, [16, 15, 13, 14, 11], 10, 7, 6], 5, 3, 1

An lbfs ordering σ is well-anchored if for each snapshot S, σ|S starts from
an exposed vertex (has a neighbor after S); or
an end vertex of G[S] if no exposed vertex.

For the snapshot S = {6, 7, 9, 10, . . . , 19} in σ3, 6 is an exposed vertex



Characterizations of interval graphs (recalled)

v2

v1 v3 v4 v6 v7 v8
v5

v1
v2

v3
v4

v5
v6

v7

v8

1 2 3 4 5

1
2

K1

2, 3
4

K2

2, 4
5, 6

K3

2, 6
7

K4

2
8

K5

clique path

1 2 3 4 5

v1
v2

v3
v4

v5
v6

v7

v8

1 2 3 4 5 6 7 8

interval
model

clique
path

interval
ordering



Interval ordering → clique path
v2

v1 v3 v4 v6 v7 v8
v5

1
2

K1

2, 3
4

K2

2, 4
5, 6

K3

2, 6
7

K4

2
8

K5

clique path

2
8

K1

2, 6
7

K2

2, 4
5, 6

K3

2, 4
5

K4

2, 3
4

K5

2
3

K6

1
2

K7

1

K8K1 K3 K5

path to ordering:
K1,K2 \K1, . . . ,Kℓ \Kℓ−1

1, 2, 3, 4, 5, 6, 7, 8

ordering to path:
Sj = {v1 . . . , vj} ∩N [vj ];

keep Sj only when |Sj | ≥ |Sj+1|.



Interval ordering → clique path
v2

v1 v3 v4 v6 v7 v8
v5

1
2

K1

2, 3
4

K2

2, 4
5, 6

K3

2, 6
7

K4

2
8

K5

clique path

2
8

K1

2, 6
7

K2

2, 4
5, 6

K3

2, 4
5

K4

2, 3
4

K5

2
3

K6

1
2

K7

1

K8K1 K3 K5

path to ordering:
K1,K2 \K1, . . . ,Kℓ \Kℓ−1

1, 2, 3, 4, 5, 6, 7, 8

ordering to path:
Sj = {v1 . . . , vj} ∩N [vj ];

keep Sj only when |Sj | ≥ |Sj+1|.



Interval orderings ←→ clique paths

An ordering σ is consistent with a clique path K1, . . . ,Kℓ if σ can be represented as

⟨K1,K2 \K1, . . . ,Kℓ \Kℓ−1⟩,

where vertices in each set are in any order.

interval
rep.

clique
path

interval
ordering

Proposition. An ordering σ is an interval ordering if and
only if σ is consistent with some clique path K1, . . . ,Kℓ.



Clique paths and modules

Lemma (C 2021). Let K1,K2, . . . ,Kℓ and Kb(1),Kb(2), . . . ,Kb(ℓ) be two different
clique paths of G. If there are p and q, 1 ≤ p < q < ℓ such that b(p) = 1 and b(q) = ℓ,

then
ℓ⋃

j=b(ℓ)

Kj ∪
ℓ⋃

i=q
Kb(i) \ (Kb(ℓ) ∩Kℓ) is a nontrivial non-clique module of G.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

K1

Kb(1)

Kp

Kb(p)

Kq

Kb(q)

Kq+1

Kb(q+1)

Kℓ

Kb(ℓ)

Proof. Let J = {b(ℓ), . . . , ℓ} ∪ {b(q), . . . , b(ℓ)} and U =
⋃

j∈J Kj \ (Kb(ℓ) ∩Kℓ).
We show N(v) \ U = Kb(ℓ) ∩Kℓ for every v ∈ U . By definition, Kb(ℓ) ∩Kℓ ⊆ N(v).
Suppose for contradiction, N(v) \ U ̸⊆ Kb(ℓ) ∩Kℓ, there exists j ̸∈ J such that
v ∈ Kj , then j < b(ℓ) and there is k < q such that b(k) = j.
Then v is at both sides of Kb(ℓ), and hence v ∈ Kb(ℓ); for the same reason, v ∈ Kℓ.
But then v is in Kb(ℓ) ∩Kℓ, and should not be in U , a contradiction.

Corollary. If an interval graph has only clique modules, then it has a unique clique path.
Theorem (Hsu 1995). A prime interval graph has a unique clique path.



The main lemma

Proposition.
Let π be a well-anchored ordering of an interval graph G, and π+ = lbfs+(G, π). For
any module M , π|M is a well-anchored ordering of G[M ]; π+|M = lbfs+(G, π|M ).

Lemma (C 2021). Let π be a well-anchored ordering of an interval graph G, then π+ is
consistent with some clique path of G.
Proof sketch. Assume that G is connected and has no universal vertices.
A major module is a maximal non-clique module M with no universal vertex.
Major modules are pairwise disjoint.
Fix a clique path K of G, where for each major module M , the subpath of K for M is
consistent with π+|M .
Suppose for contradiction that π+ is not consistent with K.
There are vp, vq s.t. vp <σ vq but vp >K vq. They aren’t in the same major module.
We can find a module containing vp and vq. But this is impossible.



Generating a well-anchored ordering

Input: A graph G, and an lbfs+ ordering τ+ of G.
Output: A well-anchored ordering π of G if G is an interval graph.

1. renumber the vertices such that τ+(vi) = i for all i = 1, . . . , n;
2. for i = 1, . . . , n do
2.1. S ← unvisited vertices with the lexicographically largest label;
2.2. vp ← the first vertex of τ+|S ;
2.3. vq ← the last vertex of τ+|S ;
2.4. if there exists ℓ < p such that vℓ ∈ N(vp) and π(vℓ) is unset then

π(vp)← i;
2.5. else if there exist vℓ ∈ S and vr ∈ N(vℓ) such that r > q then

π(vℓ)← i; (The main trick.)
2.6. else π(vq)← i;
2.7. for each unvisited neighbor of v do

add i to label(v);
3. return π.



The algorithm of Li and Wu 2014

Input: A connected graph G.
Output: Whether G is an interval graph.

1. τ ← an lbfs ordering of G;
2. τ+ ← lbfs+(G, τ);
3. π ← lbfs↑(G, τ+);
4. π+ ← lbfs+(G, π);
5. if π+ is an interval ordering of G then return “yes”;
6. else return “no.”



Graph searches deserve more attention

bfs

lbfs

mns

mcs

dfs

ldfs

A line between x (above) and y (below) indicates that y extends x.

Corneil and Krueger 2008
Lexicographic depth first search (ldfs)
Maximal neighborhood search (mns)
Tarjan and Yannakakis 1984
Maximal cardinality search (mcs)



Thanks!

yixin.cao@polyu.edu.hk

yixin.cao@polyu.edu.hk


The algorithm of Hsu and Ma

Proposition. G is an interval graph if and only if
(1) N(M) is a clique; and (2) both G′ = G− (M \ v) and G[M ] are interval graphs.

Find all the maximal modules, and the quotient graph, and work on them one by one.
The benefit is that the clique path is unique.

They developed the first linear-algorithm for modular decomposition of chordal graphs.
Any vertex v and a module M

v ∈M ; the trouble case.
M ⊆ N(v); or
M ∩N(v) = ∅.

It can be avoided if v is the vertex of the largest degree: It is only in trivial modules.

Proposition.
In a non-complete chordal graph, a maximum-degree vertex is only in clique modules.


