Recognizing（Unit）Interval Graphs by Zigzag Graph Searches

Yixin Cao
Department of Computing，Hong Kong Polytechnic University香港理工大學 電子計算學系

SIAM Symposium on Simplicity in Algorithms
January 10， 2021

(a) An interval graph.

(b) Its interval representation.

A graph G is an interval graph if there is a set \mathcal{I} of intervals on the real line and a bijection $\phi: V(G) \rightarrow \mathcal{I}$ such that $u v \in E(G) \Longleftrightarrow \phi(u) \cap \phi(v) \neq \emptyset$.

The answer: monarchy rulers of China, France, and UK, 1661-1900

- Each interval representation defines a unique interval graph.
- But an interval graph can have many interval representations.

$$
I(v)=[\operatorname{lp}(v), \operatorname{rp}(v)]
$$

- What're important aren't the absolute positions of the $2 n$ endpoints.
- but the ordering, not unique but finite.

Characterization of interval graphs: Clique paths

Characterization of interval graphs: Clique paths

For each endpoint, draw a vertical line. Intervals crossing each line induce a clique.

They include all maximal cliques.

Characterization of interval graphs: Clique paths

For each endpoint, draw a vertical line. Intervals crossing each line induce a clique.

They include all maximal cliques.
Clique path (a special kind of clique tree): each node for a maximal clique and cliques containing v induce a sub-path.

Characterization of interval graphs: Clique paths

For each endpoint, draw a vertical line. Intervals crossing each line induce a clique.

They include all maximal cliques.
Clique path (a special kind of clique tree): each node for a maximal clique and cliques containing v induce a sub-path.

From a clique path we can "read"
$\operatorname{lp}(v)=\min \left\{i \mid v \in K_{i}\right\}$
$\operatorname{rp}(v)=\max \left\{i \mid v \in K_{i}\right\}$

Characterization of interval graphs: Interval ordering

Sort the intervals by their left endpoints. breaking ties arbitrarily.
$i<j<k$ and $v_{i} \sim v_{k}$ then $v_{i} \sim v_{j}$.

Characterization of interval graphs: Interval ordering

Sort the intervals by their left endpoints. breaking ties arbitrarily.
$i<j<k$ and $v_{i} \sim v_{k}$ then $v_{i} \sim v_{j}$.

$\sigma:$	1,	2,	3,	4,	5,	6,	7,	8.
$r(i):$	2,	8,	4,	6,	6,	7,	7,	8.

From an ordering we can read:
$I\left(v_{i}\right)=\left[\sigma\left(v_{i}\right), \sigma\left(v_{r(i)}\right)\right]$

The following are equivalent:
(1) G is an interval graph.
(2) G has an interval ordering.
(3) G has a clique path.

Recursive breadth-first search (BFS)

The output of a BFS is a BFS tree

in which the order of siblings is immaterial.
$3, \ldots, 8$ can be visited in any order.

Since we aim for an ordering.
We may recursively conduct BFS.
$1,2,[3, \ldots, 8]$
$1,2,3,4,[5,6], 7,8$
$1,2,3,4,5,6,7,8$
$L_{1}, L_{2} \subseteq\{1,2, \ldots, n\}$, and $L_{1} \neq L_{2}$.
L_{1} is lexicographically larger than L_{2} if the minimum element in $\left(L_{1} \backslash L_{2}\right) \cup\left(L_{2} \backslash L_{1}\right)$ belongs to L_{1}.

$$
\text { e.g., }\{1,2\}>\{1,3,4\}>\{1\} \text {. }
$$

1. for each $v \in V(G)$ do $\operatorname{label}(v) \leftarrow \emptyset$;
2. for $i=1, \ldots, n$ do
2.1. $S \leftarrow$ unvisited vertices with the lexicographically largest label;
2.2. $v \leftarrow$ any vertex in S;
2.3. $\quad \sigma(v) \leftarrow i$;
2.4. for each unvisited neighbor of v do add i to label (v);
3. return σ.

Fact: LBFS is the recursive BFS.
Theorem (rose-76-vertex-elimination rose-76-vertex-elimination).
On a chordal ($\left\{C_{\ell} \mid \ell \geq 4\right\}$-free) graph, the last vertex of an LBFS is simplicial.

Interval orderings and LBFS orderings

Proposition. Any interval ordering σ of an interval graph G is an LBFS ordering of G.
Proof. We may assume without loss of generality that $\sigma\left(v_{i}\right)=i$ for all $i=1, \ldots, n$. For any i, p, and q with $i<p<q$, if $v_{i} v_{q} \in E(G)$, then $v_{i} v_{p} \in E(G)$ as well. Thus,

$$
\left\{v_{1}, \ldots, v_{p-1}\right\} \cap N\left(v_{q}\right) \subseteq\left\{v_{1}, \ldots, v_{p-1}\right\} \cap N\left(v_{p}\right),
$$

and after visiting $\left\{v_{1}, \ldots, v_{p-1}\right\}$, the label of v_{p} is no smaller than that of v_{q}.

- The other direction is not true: most LBFS orderings are not interval orderings.

Theorem (corneil-10-end-vertices-lbfs corneil-10-end-vertices-lbfs).
If G is an interval graph, then an interval ordering of G can be produced by less than n sweeps of LBFS^{+}(a variant of LBFS).

These representations are not unique
The clique tree implies a representation.
Two subtrees intersect if they have one point in common.

Recognition algorithms for interval graphs

Build a clique tree and check whether it can be transformed into a clique path:

- booth-76-pq-tree booth-76-pq-tree PQ-trees.
- korte-89-recognizing-interval-graphs korte-89-recognizing-interval-graphs LBFS and Modified PQ-trees.
- Hsu and McConnell hsu-03-pc-trees
- Hsu and Ma hsu-99-recognizing-interval-graphs modular decomposition
- habib-00-LBFS-and-partition-refinement habib-00-LBFS-and-partition-refinement

LBFS and partition refinement.
Construct an interval ordering:

- simon-91-interval simon-91-interval
multiple sweeps LBFS
- corneil-09-lbfs-strucuture-and-interval-recognition corneil-09-lbfs-strucuture-and-interval-recognition

6 sweeps of LBFS

- li-14-Ibfs-interval-recognition li-14-Ibfs-interval-recognition 4 sweeps of LBFS

Appetizer: Unit Interval Graphs

Unit/proper interval graphs

unit: All the intervals have the same length.
proper: No interval properly contains another.

Umbrella (proper interval) ordering:

$$
v_{i} \sim v_{k} \Rightarrow v_{i} \sim v_{j} \text { and } v_{j} \sim v_{k}
$$

- Sorting vertices in the order of their left endpoints in a proper representations.
- The reversal of an umbrella ordering is also an umbrella ordering.

$v_{r(i)}$: last neighbor of v_{i} in σ

Umbrella orderings \rightarrow clique paths and representations

Uniqueness of clique paths

Proposition. A connected proper interval graph has a unique clique path.
Proof 1: Suppose that there are two clique paths. We can find a minimal sub-path of the first that do not appear in the same order in the second.

2. Follows from Hsu's theorem if all its modules are cliques. Trivial if $K_{r} \vee\left(K_{p}+K_{q}\right)$. Otherwise, removing universal vertices leaves another connected proper interval graph. 3. Let K_{1}, \ldots, K_{ℓ} be a clique path. A simplicial vertex in $K_{i}, 1<i<\ell$ is the nose of a bull. So the ends of any clique path of G must be K_{1} and K_{ℓ}. Then K_{2} and $K_{\ell-1}$.

Theorem (Deng, Hell, Huang 1996).
If a unit interval graph contains no true twins, then it has a unique ordering up to ...

LBFS on unit interval graphs

We look for an umbrella ordering, so should start from "an end" of the graph.

From v_{1} may give $\left\langle v_{1}, v_{2}, v_{4}, v_{3}, v_{5}\right\rangle$
or $\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\rangle$
It cannot distinguish v_{3} and v_{4}.

LBFS on unit interval graphs

We look for an umbrella ordering, so should start from "an end" of the graph.

From v_{1} may give $\left\langle v_{1}, v_{2}, v_{4}, v_{3}, v_{5}\right\rangle$ or $\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\rangle$
It cannot distinguish v_{3} and v_{4}.

From v_{5} may give $\left\langle v_{5}, v_{4}, v_{3}, v_{2}, v_{1}\right\rangle$ or $\left\langle v_{5}, v_{4}, v_{2}, v_{3}, v_{1}\right\rangle$
It cannot distinguish v_{2} and v_{3}.

LBFS on unit interval graphs

We look for an umbrella ordering, so should start from "an end" of the graph.

> From v_{1} may give $\left\langle v_{1}, v_{2}, v_{4}, v_{3}, v_{5}\right\rangle$ or $\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\rangle$

It cannot distinguish v_{3} and v_{4}.

From v_{5} may give $\left\langle v_{5}, v_{4}, v_{3}, v_{2}, v_{1}\right\rangle$
or $\left\langle v_{5}, v_{4}, v_{2}, v_{3}, v_{1}\right\rangle$
It cannot distinguish v_{2} and v_{3}.

Together they can:
v_{2} before $v_{3} ; v_{4}$ after v_{3}.

LBFS on unit interval graphs

We look for an umbrella ordering, so should start from "an end" of the graph.

> From v_{1} may give $\left\langle v_{1}, v_{2}, v_{4}, v_{3}, v_{5}\right\rangle$ or $\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\rangle$
> It cannot distinguish v_{3} and v_{4}.

From v_{5} may give $\left\langle v_{5}, v_{4}, v_{3}, v_{2}, v_{1}\right\rangle$ or $\left\langle v_{5}, v_{4}, v_{2}, v_{3}, v_{1}\right\rangle$
It cannot distinguish v_{2} and v_{3}.

Not done yet
(1) Where are "the ends"?
(2) How to combine the two orderings?
(3) Whether the output is correct?

Together they can:
v_{2} before $v_{3} ; v_{4}$ after v_{3}.

1. find "the ends"?
2. combine complementary orderings
3. verify the output

A terminal: a simplicial vertex in the first clique of a clique path. More restrictive than end interval (Gimbel gimbel-88-end-vertices)

Proposition. The last vertex of an LBFS ordering is a terminal of G. Corollary. An LBFS starting from a terminal ends with another terminal.

1. find "the ends'?
2. combine complementary orderings

Input: A graph G, and an LBFS ordering σ of G.

1. for each $v \in V(G)$ do $\operatorname{label}(v) \leftarrow \emptyset$;
2. for $i=1, \ldots, n$ do
2.1. $S \leftarrow$ unvisited vertices with the lexicographically largest label;
2.2. $v \leftarrow$ the last vertex of $\left.\sigma\right|_{S}$;
2.3. $\quad \sigma^{+}(v) \leftarrow i$;
2.4. for each unvisited neighbor of v do add i to label (v);
3. return σ^{+}.
4. $\quad \tau \leftarrow$ an LBFS ordering of G;
5. $\sigma \leftarrow \operatorname{LBFS}^{+}(G, \tau)$;
6. $\sigma^{+} \leftarrow \operatorname{LBFS}^{+}(G, \sigma)$;
7. if σ^{+}is an umbrella ordering of G then return "yes";
8. else return "no."

Theorem (Corneil 2004).
If G is a proper interval graph, then three sweeps of LBFS produce an umbrella ordering.

1. find "the ends'?
2. combine complementary orderings
3. verify the output

Final output σ^{+}:
$v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$

Order $N(v)$ in the reversed order of σ^{+}

$$
v_{1}: v_{2}
$$

$$
v_{2}: v_{4} \rightarrow v_{3} \rightarrow v_{1}
$$

$$
v_{3}: v_{4} \rightarrow v_{2}
$$

$$
v_{4}: v_{5} \rightarrow v_{3} \rightarrow v_{2}
$$

$$
v_{5}: v_{4}
$$

check whether the list for v_{i} starts from

$$
r(i), r(i)-1, \ldots, i+1
$$

Do the same operations for the reversal of σ^{+} return "yes" if both tests are passed.

Input: A connected graph G and a vertex $s \in V(G)$.

1. for each $v \in V(G)$ do $\operatorname{label}(v) \leftarrow \emptyset$;
2. $\sigma(s) \leftarrow 1$;
3. for $i=2, \ldots, n$ do
3.1. $S \leftarrow$ unvisited vertices with the lexicographically largest label;
3.2. $v \leftarrow$ a vertex with the minimum degree in S;
3.3. $\quad \sigma(v) \leftarrow i$;
3.4. for each unvisited neighbor of v do add i to label (v);
4. return σ.
5. $u \leftarrow$ an end vertex of G;
6. $\quad \sigma \leftarrow \operatorname{LBFS}^{\delta}(G, u)$;
7. if σ is an umbrella ordering of G then return "yes";
8. else return "no."

Recognition of Interval Graphs

- for $1 \leq i<j<k \leq n, v_{i} \sim v_{k}$ implies only $v_{i} \sim v_{j}$.
- the reversal of an interval ordering may not be an interval ordering. $1,2, \ldots, 17$ is an interval ordering, but $17,16, \ldots, 1$ is not.
- clique paths may not be unique.
- An LBFS does not necessarily go from left to right, it can jump arbitrarily (zigzag). e.g., $1,2,16,11, \ldots$

An oversimplistic summary

Breaking fake twins (unit interval graphs) ${ }^{1}$ and fake modules (interval graphs).
${ }^{1}$ If an unit interval graph contains a non-clique module, it's more or less trivial.

M is a module if for all $u, v \in M$ and $x \notin M, x u \in E(G)$ if and only if $x v \in E(G)$. vertices in M have the same neighborhood outside M.

- trivial modules: $V(G), \emptyset$, and $\{v\}$.
the graph has 13 trivial modules.
- Other simple examples: components and twin classes (clique modules, independent set modules).

Interval graphs and modules

Let M be a non-clique module of G, and $G^{\prime}=G-(M \backslash\{v\})$ for some vertex $v \in M$.
Proposition. G is an interval graph if and only if (1) $N(M)$ is a clique; and (2) both G^{\prime} and $G[M]$ are interval graphs.

(a) G
(b) G^{\prime} and $G[M]$

(c) interval representations for G^{\prime} and $G[M]$.

Why it worked and why it doesn't work

For the recognition of proper interval graphs,

- it is neither necessary nor possible to distinguish true twins;

- what we need to do is to distinguish "fake" twins; and
- an LBFS from v_{1} cannot distinguish $\left\{v_{3}, v_{4}\right\}$.

In both graphs, an LBFS from v_{1} cannot distinguish $\left\{v_{3}, v_{4}, \ldots, v_{8}\right\}$, a module $(N(M)=N(x) \backslash M$ for all $x \in M)$ in the first, but not the second.

$$
\begin{aligned}
2 \text { un }
\end{aligned}
$$

- Snapshot: the set S in step 2.1 in LBFS ${ }^{+}$.
- There are n snapshots, the one in the iteration visiting v_{i} is denoted by $S_{\sigma}\left(v_{i}\right)$.
- $S_{\sigma}\left(v_{1}\right)=V(G)$ and $S_{\sigma}\left(v_{n}\right)=\left\{v_{n}\right\}$.
- All vertices in $S_{\sigma}\left(v_{i}\right)$ have the label in this iteration, i.e., $\left\{v_{1}, \ldots, v_{i-1}\right\} \cap N\left(v_{i}\right)$.

nontrivial snapshots of $1, \ldots, 8$.

$$
\begin{aligned}
& 1: 1,2,3,4,5,6,7,8 . \\
& 3: 3,4,5,6,7,8 \\
& 5: 5,6
\end{aligned}
$$

in summary, $1,2,[3,4,[5,6], 7,8]$.

Well-anchored orderings

An LBFS ordering σ is well-anchored if for each snapshot $S,\left.\sigma\right|_{S}$ starts from

- an exposed vertex (has a neighbor after S); or
- an end vertex of $G[S]$ if no exposed vertex.

For the snapshot $S=\{6,7,9,10, \ldots, 19\}$ in $\sigma_{3}, 6$ is an exposed vertex

Characterizations of interval graphs (recalled)

path to ordering:
$K_{1}, K_{2} \backslash K_{1}, \ldots, K_{\ell} \backslash K_{\ell-1}$
$1,2,3,4,5,6,7,8$

ordering to path:

$$
S_{j}=\left\{v_{1} \ldots, v_{j}\right\} \cap N\left[v_{j}\right] ;
$$

$$
\text { keep } S_{j} \text { only when }\left|S_{j}\right| \geq\left|S_{j+1}\right| \text {. }
$$

path to ordering:
$K_{1}, K_{2} \backslash K_{1}, \ldots, K_{\ell} \backslash K_{\ell-1}$
$1,2,3,4,5,6,7,8$
$K_{1} \quad K_{2}$
$\underbrace{2}_{K_{3}} \begin{aligned} & K_{4} \\ & 3 \\ & 4\end{aligned} \underbrace{2,4}_{K_{5}} \begin{aligned} & 5 \\ & 5,6 \\ & K_{6} \\ & K_{7} \\ & K_{8}\end{aligned}$

Interval orderings \longleftrightarrow clique paths

An ordering σ is consistent with a clique path K_{1}, \ldots, K_{ℓ} if σ can be represented as

$$
\left\langle K_{1}, K_{2} \backslash K_{1}, \ldots, K_{\ell} \backslash K_{\ell-1}\right\rangle,
$$

where vertices in each set are in any order.

Proposition. An ordering σ is an interval ordering if and only if σ is consistent with some clique path K_{1}, \ldots, K_{ℓ}.

Clique paths and modules

Lemma (C 2021). Let $K_{1}, K_{2}, \ldots, K_{\ell}$ and $K_{b(1)}, K_{b(2)}, \ldots, K_{b(\ell)}$ be two different clique paths of G. If there are p and $q, 1 \leq p<q<\ell$ such that $b(p)=1$ and $b(q)=\ell$, then $\bigcup_{j=b(\ell)}^{\ell} K_{j} \cup \bigcup_{i=q}^{\ell} K_{b(i)} \backslash\left(K_{b(\ell)} \cap K_{\ell}\right)$ is a nontrivial non-clique module of G.

K_{1}	\cdots	K_{p}	\cdots	K_{q}	K_{q+1}	\cdots	K_{ℓ}
$K_{b(1)}$	\cdots	$K_{b(p)}$	\cdots	$K_{b(q)}$	$K_{b(q+1)}$	\cdots	$K_{b(\ell)}$

Proof. Let $J=\{b(\ell), \ldots, \ell\} \cup\{b(q), \ldots, b(\ell)\}$ and $U=\bigcup_{j \in J} K_{j} \backslash\left(K_{b(\ell)} \cap K_{\ell}\right)$. We show $N(v) \backslash U=K_{b(\ell)} \cap K_{\ell}$ for every $v \in U$. By definition, $K_{b(\ell)} \cap K_{\ell} \subseteq N(v)$. Suppose for contradiction, $N(v) \backslash U \nsubseteq K_{b(\ell)} \cap K_{\ell}$, there exists $j \notin J$ such that $v \in K_{j}$, then $j<b(\ell)$ and there is $k<q$ such that $b(k)=j$.
Then v is at both sides of $K_{b(\ell)}$, and hence $v \in K_{b(\ell)}$; for the same reason, $v \in K_{\ell}$. But then v is in $K_{b(\ell)} \cap K_{\ell}$, and should not be in U, a contradiction.

Corollary. If an interval graph has only clique modules, then it has a unique clique path. Theorem (Hsu 1995). A prime interval graph has a unique clique path.

Proposition.

Let π be a well-anchored ordering of an interval graph G, and $\pi^{+}=\operatorname{LBFS}^{+}(G, \pi)$. For any module $M,\left.\pi\right|_{M}$ is a well-anchored ordering of $G[M] ;\left.\pi^{+}\right|_{M}=\operatorname{LBFS}^{+}\left(G,\left.\pi\right|_{M}\right)$.

Lemma (C 2021). Let π be a well-anchored ordering of an interval graph G, then π^{+}is consistent with some clique path of G.
Proof sketch. Assume that G is connected and has no universal vertices.
A major module is a maximal non-clique module M with no universal vertex.
Major modules are pairwise disjoint.
Fix a clique path \mathcal{K} of G, where for each major module M, the subpath of \mathcal{K} for M is consistent with $\left.\pi^{+}\right|_{M}$.
Suppose for contradiction that π^{+}is not consistent with \mathcal{K}.
There are v_{p}, v_{q} s.t. $v_{p}<_{\sigma} v_{q}$ but $v_{p}>_{\mathcal{K}} v_{q}$. They aren't in the same major module.
We can find a module containing v_{p} and v_{q}. But this is impossible.

Input: A graph G, and an LBFS^{+}ordering τ^{+}of G.
Output: A well-anchored ordering π of G if G is an interval graph.

1. renumber the vertices such that $\tau^{+}\left(v_{i}\right)=i$ for all $i=1, \ldots, n$;
2. for $i=1, \ldots, n$ do
2.1. $S \leftarrow$ unvisited vertices with the lexicographically largest label;
2.2. $\quad v_{p} \leftarrow$ the first vertex of $\left.\tau^{+}\right|_{S}$;
2.3. $\quad v_{q} \leftarrow$ the last vertex of $\left.\tau^{+}\right|_{S}$;
2.4. if there exists $\ell<p$ such that $v_{\ell} \in N\left(v_{p}\right)$ and $\pi\left(v_{\ell}\right)$ is unset then $\pi\left(v_{p}\right) \leftarrow i ;$
2.5. else if there exist $v_{\ell} \in S$ and $v_{r} \in N\left(v_{\ell}\right)$ such that $r>q$ then $\pi\left(v_{\ell}\right) \leftarrow i$; (The main trick.)
2.6. \quad else $\pi\left(v_{q}\right) \leftarrow i$;
2.7. for each unvisited neighbor of v do add i to label (v);
3. return π.

Input: A connected graph G.
Output: Whether G is an interval graph.

1. $\quad \tau \leftarrow$ an LBFS ordering of G;
2. $\tau^{+} \leftarrow \operatorname{LBFS}^{+}(G, \tau)$;
3. $\pi \leftarrow \operatorname{LBFS}^{\uparrow}\left(G, \tau^{+}\right)$;
4. $\pi^{+} \leftarrow \operatorname{LBFS}^{+}(G, \pi)$;
5. if π^{+}is an interval ordering of G then return "yes";
6. else return "no."

A line between x (above) and y (below) indicates that y extends x .

- Corneil and Krueger 2008

Lexicographic depth first search (LDFS)
Maximal neighborhood search (MNS)

- Tarjan and Yannakakis 1984

Maximal cardinality search (MCS)

Thanks!
yixin.cao@polyu.edu.hk

Proposition. G is an interval graph if and only if
(1) $N(M)$ is a clique; and (2) both $G^{\prime}=G-(M \backslash v)$ and $G[M]$ are interval graphs.

Find all the maximal modules, and the quotient graph, and work on them one by one. The benefit is that the clique path is unique.

They developed the first linear-algorithm for modular decomposition of chordal graphs. Any vertex v and a module M

- $v \in M$; the trouble case.
- $M \subseteq N(v)$; or
- $M \cap N(v)=\emptyset$.

It can be avoided if v is the vertex of the largest degree: It is only in trivial modules.

Proposition.
In a non-complete chordal graph, a maximum-degree vertex is only in clique modules.

